Paper ID: 2202.04169
SwiftAgg: Communication-Efficient and Dropout-Resistant Secure Aggregation for Federated Learning with Worst-Case Security Guarantees
Tayyebeh Jahani-Nezhad, Mohammad Ali Maddah-Ali, Songze Li, Giuseppe Caire
We propose SwiftAgg, a novel secure aggregation protocol for federated learning systems, where a central server aggregates local models of $N$ distributed users, each of size $L$, trained on their local data, in a privacy-preserving manner. Compared with state-of-the-art secure aggregation protocols, SwiftAgg significantly reduces the communication overheads without any compromise on security. Specifically, in presence of at most $D$ dropout users, SwiftAgg achieves a users-to-server communication load of $(T+1)L$ and a users-to-users communication load of up to $(N-1)(T+D+1)L$, with a worst-case information-theoretic security guarantee, against any subset of up to $T$ semi-honest users who may also collude with the curious server. The key idea of SwiftAgg is to partition the users into groups of size $D+T+1$, then in the first phase, secret sharing and aggregation of the individual models are performed within each group, and then in the second phase, model aggregation is performed on $D+T+1$ sequences of users across the groups. If a user in a sequence drops out in the second phase, the rest of the sequence remain silent. This design allows only a subset of users to communicate with each other, and only the users in a single group to directly communicate with the server, eliminating the requirements of 1) all-to-all communication network across users; and 2) all users communicating with the server, for other secure aggregation protocols. This helps to substantially slash the communication costs of the system.
Submitted: Feb 8, 2022