Paper ID: 2202.04311
Identifying Backdoor Attacks in Federated Learning via Anomaly Detection
Yuxi Mi, Yiheng Sun, Jihong Guan, Shuigeng Zhou
Federated learning has seen increased adoption in recent years in response to the growing regulatory demand for data privacy. However, the opaque local training process of federated learning also sparks rising concerns about model faithfulness. For instance, studies have revealed that federated learning is vulnerable to backdoor attacks, whereby a compromised participant can stealthily modify the model's behavior in the presence of backdoor triggers. This paper proposes an effective defense against the attack by examining shared model updates. We begin with the observation that the embedding of backdoors influences the participants' local model weights in terms of the magnitude and orientation of their model gradients, which can manifest as distinguishable disparities. We enable a robust identification of backdoors by studying the statistical distribution of the models' subsets of gradients. Concretely, we first segment the model gradients into fragment vectors that represent small portions of model parameters. We then employ anomaly detection to locate the distributionally skewed fragments and prune the participants with the most outliers. We embody the findings in a novel defense method, ARIBA. We demonstrate through extensive analyses that our proposed methods effectively mitigate state-of-the-art backdoor attacks with minimal impact on task utility.
Submitted: Feb 9, 2022