Paper ID: 2202.06465
A State-of-the-art Survey of U-Net in Microscopic Image Analysis: from Simple Usage to Structure Mortification
Jian Wu, Wanli Liu, Chen Li, Tao Jiang, Islam Mohammad Shariful, Hongzan Sun, Xiaoqi Li, Xintong Li, Xinyu Huang, Marcin Grzegorzek
Image analysis technology is used to solve the inadvertences of artificial traditional methods in disease, wastewater treatment, environmental change monitoring analysis and convolutional neural networks (CNN) play an important role in microscopic image analysis. An important step in detection, tracking, monitoring, feature extraction, modeling and analysis is image segmentation, in which U-Net has increasingly applied in microscopic image segmentation. This paper comprehensively reviews the development history of U-Net, and analyzes various research results of various segmentation methods since the emergence of U-Net and conducts a comprehensive review of related papers. First, this paper has summarized the improved methods of U-Net and then listed the existing significance of image segmentation techniques and their improvements that has introduced over the years. Finally, focusing on the different improvement strategies of U-Net in different papers, the related work of each application target is reviewed according to detailed technical categories to facilitate future research. Researchers can clearly see the dynamics of transmission of technological development and keep up with future trends in this interdisciplinary field.
Submitted: Feb 14, 2022