Paper ID: 2202.06941

Semi-Equivariant GNN Architectures for Jet Tagging

Daniel Murnane, Savannah Thais, Jason Wong

Composing Graph Neural Networks (GNNs) of operations that respect physical symmetries has been suggested to give better model performance with a smaller number of learnable parameters. However, real-world applications, such as in high energy physics have not born this out. We present the novel architecture VecNet that combines both symmetry-respecting and unconstrained operations to study and tune the degree of physics-informed GNNs. We introduce a novel metric, the \textit{ant factor}, to quantify the resource-efficiency of each configuration in the search-space. We find that a generalized architecture such as ours can deliver optimal performance in resource-constrained applications.

Submitted: Feb 14, 2022