Paper ID: 2202.07178
Federated Learning with Sparsified Model Perturbation: Improving Accuracy under Client-Level Differential Privacy
Rui Hu, Yanmin Gong, Yuanxiong Guo
Federated learning (FL) that enables edge devices to collaboratively learn a shared model while keeping their training data locally has received great attention recently and can protect privacy in comparison with the traditional centralized learning paradigm. However, sensitive information about the training data can still be inferred from model parameters shared in FL. Differential privacy (DP) is the state-of-the-art technique to defend against those attacks. The key challenge to achieving DP in FL lies in the adverse impact of DP noise on model accuracy, particularly for deep learning models with large numbers of parameters. This paper develops a novel differentially-private FL scheme named Fed-SMP that provides a client-level DP guarantee while maintaining high model accuracy. To mitigate the impact of privacy protection on model accuracy, Fed-SMP leverages a new technique called Sparsified Model Perturbation (SMP) where local models are sparsified first before being perturbed by Gaussian noise. We provide a tight end-to-end privacy analysis for Fed-SMP using Renyi DP and prove the convergence of Fed-SMP with both unbiased and biased sparsifications. Extensive experiments on real-world datasets are conducted to demonstrate the effectiveness of Fed-SMP in improving model accuracy with the same DP guarantee and saving communication cost simultaneously.
Submitted: Feb 15, 2022