Paper ID: 2202.07219
Multi-style Training for South African Call Centre Audio
Walter Heymans, Marelie H. Davel, Charl van Heerden
Mismatched data is a challenging problem for automatic speech recognition (ASR) systems. One of the most common techniques used to address mismatched data is multi-style training (MTR), a form of data augmentation that attempts to transform the training data to be more representative of the testing data; and to learn robust representations applicable to different conditions. This task can be very challenging if the test conditions are unknown. We explore the impact of different MTR styles on system performance when testing conditions are different from training conditions in the context of deep neural network hidden Markov model (DNN-HMM) ASR systems. A controlled environment is created using the LibriSpeech corpus, where we isolate the effect of different MTR styles on final system performance. We evaluate our findings on a South African call centre dataset that contains noisy, WAV49-encoded audio.
Submitted: Feb 15, 2022