Paper ID: 2202.08146
A Prospective Approach for Human-to-Human Interaction Recognition from Wi-Fi Channel Data using Attention Bidirectional Gated Recurrent Neural Network with GUI Application Implementation
Md. Mohi Uddin Khan, Abdullah Bin Shams, Md. Mohsin Sarker Raihan
Human Activity Recognition (HAR) research has gained significant momentum due to recent technological advancements, artificial intelligence algorithms, the need for smart cities, and socioeconomic transformation. However, existing computer vision and sensor-based HAR solutions have limitations such as privacy issues, memory and power consumption, and discomfort in wearing sensors for which researchers are observing a paradigm shift in HAR research. In response, WiFi-based HAR is gaining popularity due to the availability of more coarse-grained Channel State Information. However, existing WiFi-based HAR approaches are limited to classifying independent and non-concurrent human activities performed within equal time duration. Recent research commonly utilizes a Single Input Multiple Output communication link with a WiFi signal of 5 GHz channel frequency, using two WiFi routers or two Intel 5300 NICs as transmitter-receiver. Our study, on the other hand, utilizes a Multiple Input Multiple Output radio link between a WiFi router and an Intel 5300 NIC, with the time-series Wi-Fi channel state information based on 2.4 GHz channel frequency for mutual human-to-human concurrent interaction recognition. The proposed Self-Attention guided Bidirectional Gated Recurrent Neural Network (Attention-BiGRU) deep learning model can classify 13 mutual interactions with a maximum benchmark accuracy of 94% for a single subject-pair. This has been expanded for ten subject pairs, which secured a benchmark accuracy of 88% with improved classification around the interaction-transition region. An executable graphical user interface (GUI) software has also been developed in this study using the PyQt5 python module to classify, save, and display the overall mutual concurrent human interactions performed within a given time duration. ...
Submitted: Feb 16, 2022