Paper ID: 2202.09145

Generalizing Aggregation Functions in GNNs:High-Capacity GNNs via Nonlinear Neighborhood Aggregators

Beibei Wang, Bo Jiang

Graph neural networks (GNNs) have achieved great success in many graph learning tasks. The main aspect powering existing GNNs is the multi-layer network architecture to learn the nonlinear graph representations for the specific learning tasks. The core operation in GNNs is message propagation in which each node updates its representation by aggregating its neighbors' representations. Existing GNNs mainly adopt either linear neighborhood aggregation (mean,sum) or max aggregator in their message propagation. (1) For linear aggregators, the whole nonlinearity and network's capacity of GNNs are generally limited due to deeper GNNs usually suffer from over-smoothing issue. (2) For max aggregator, it usually fails to be aware of the detailed information of node representations within neighborhood. To overcome these issues, we re-think the message propagation mechanism in GNNs and aim to develop the general nonlinear aggregators for neighborhood information aggregation in GNNs. One main aspect of our proposed nonlinear aggregators is that they provide the optimally balanced aggregators between max and mean/sum aggregations. Thus, our aggregators can inherit both (i) high nonlinearity that increases network's capacity and (ii) detail-sensitivity that preserves the detailed information of representations together in GNNs' message propagation. Promising experiments on several datasets show the effectiveness of the proposed nonlinear aggregators.

Submitted: Feb 18, 2022