Paper ID: 2202.10921

A Deep Learning Approach to Predicting Ventilator Parameters for Mechanically Ventilated Septic Patients

Zhijun Zeng, Zhen Hou, Ting Li, Lei Deng, Jianguo Hou, Xinran Huang, Jun Li, Meirou Sun, Yunhan Wang, Qiyu Wu, Wenhao Zheng, Hua Jiang, Qi Wang

We develop a deep learning approach to predicting a set of ventilator parameters for a mechanically ventilated septic patient using a long and short term memory (LSTM) recurrent neural network (RNN) model. We focus on short-term predictions of a set of ventilator parameters for the septic patient in emergency intensive care unit (EICU). The short-term predictability of the model provides attending physicians with early warnings to make timely adjustment to the treatment of the patient in the EICU. The patient specific deep learning model can be trained on any given critically ill patient, making it an intelligent aide for physicians to use in emergent medical situations.

Submitted: Feb 21, 2022