Paper ID: 2202.11460
Evacuation trials from a double-deck electric train unit: Experimental data and sensitivity analysis
Hana Najmanová, Veronika Pešková, Lukáš Kuklík, Marek Bukáček, Pavel Hrabák, Daniel Vašata
Passenger trains represent a challenging environment in emergencies, with specific evacuation conditions resulting from the typical layout and interior design inherent to public transportation vehicles. This paper describes a dataset obtained in a full-scale controlled experiment emulating the emergency evacuation of a double-deck electric unit railcar carried out in Prague in 2018. 15 evacuation trials involving 91 participants were conducted under various evacuation scenarios considering different compositions of passenger crowd, exit widths, and exit types (e.g. egress to a high platform, to an open rail line using stairs, and a 750 mm jump without any supporting equipment). The study's main goals were to collect experimental data on the movement conditions in the railcar and to study the impact of various boundary conditions on evacuation process and total evacuation time. Movement characteristics (exit flows, speeds) and human behaviour (pre-movement activities, exiting behaviours) were also analysed. The data obtained was used to validate and adjust a Pathfinder model to capture important aspects of evacuation from the railcar. Furthermore, a series of simulations using this model was performed to provide sensitivity analysis of the influence of crowd composition, exit width, and exit type on total evacuation time. As a key finding, we can conclude that for the case of a standard exit path (platform or stairs) the width of the main exit had the greatest impact on total evacuation time, however, crowd composition played the prevailing role in evacuation scenarios involving a jump.
Submitted: Feb 23, 2022