Paper ID: 2202.12065

Activation Functions: Dive into an optimal activation function

Vipul Bansal

Activation functions have come up as one of the essential components of neural networks. The choice of adequate activation function can impact the accuracy of these methods. In this study, we experiment for finding an optimal activation function by defining it as a weighted sum of existing activation functions and then further optimizing these weights while training the network. The study uses three activation functions, ReLU, tanh, and sin, over three popular image datasets, MNIST, FashionMNIST, and KMNIST. We observe that the ReLU activation function can easily overlook other activation functions. Also, we see that initial layers prefer to have ReLU or LeakyReLU type of activation functions, but deeper layers tend to prefer more convergent activation functions.

Submitted: Feb 24, 2022