Paper ID: 2202.12833

Inter-Cell Slicing Resource Partitioning via Coordinated Multi-Agent Deep Reinforcement Learning

Tianlun Hu, Qi Liao, Qiang Liu, Dan Wellington, Georg Carle

Network slicing enables the operator to configure virtual network instances for diverse services with specific requirements. To achieve the slice-aware radio resource scheduling, dynamic slicing resource partitioning is needed to orchestrate multi-cell slice resources and mitigate inter-cell interference. It is, however, challenging to derive the analytical solutions due to the complex inter-cell interdependencies, interslice resource constraints, and service-specific requirements. In this paper, we propose a multi-agent deep reinforcement learning (DRL) approach that improves the max-min slice performance while maintaining the constraints of resource capacity. We design two coordination schemes to allow distributed agents to coordinate and mitigate inter-cell interference. The proposed approach is extensively evaluated in a system-level simulator. The numerical results show that the proposed approach with inter-agent coordination outperforms the centralized approach in terms of delay and convergence. The proposed approach improves more than two-fold increase in resource efficiency as compared to the baseline approach.

Submitted: Feb 25, 2022