Paper ID: 2202.13227
Towards Scalable and Robust Structured Bandits: A Meta-Learning Framework
Runzhe Wan, Lin Ge, Rui Song
Online learning in large-scale structured bandits is known to be challenging due to the curse of dimensionality. In this paper, we propose a unified meta-learning framework for a general class of structured bandit problems where the parameter space can be factorized to item-level. The novel bandit algorithm is general to be applied to many popular problems,scalable to the huge parameter and action spaces, and robust to the specification of the generalization model. At the core of this framework is a Bayesian hierarchical model that allows information sharing among items via their features, upon which we design a meta Thompson sampling algorithm. Three representative examples are discussed thoroughly. Both theoretical analysis and numerical results support the usefulness of the proposed method.
Submitted: Feb 26, 2022