Paper ID: 2202.13295
Efficient Attribute Unlearning: Towards Selective Removal of Input Attributes from Feature Representations
Tao Guo, Song Guo, Jiewei Zhang, Wenchao Xu, Junxiao Wang
Recently, the enactment of privacy regulations has promoted the rise of the machine unlearning paradigm. Existing studies of machine unlearning mainly focus on sample-wise unlearning, such that a learnt model will not expose user's privacy at the sample level. Yet we argue that such ability of selective removal should also be presented at the attribute level, especially for the attributes irrelevant to the main task, e.g., whether a person recognized in a face recognition system wears glasses or the age range of that person. Through a comprehensive literature review, it is found that existing studies on attribute-related problems like fairness and de-biasing learning cannot address the above concerns properly. To bridge this gap, we propose a paradigm of selectively removing input attributes from feature representations which we name `attribute unlearning'. In this paradigm, certain attributes will be accurately captured and detached from the learned feature representations at the stage of training, according to their mutual information. The particular attributes will be progressively eliminated along with the training procedure towards convergence, while the rest of attributes related to the main task are preserved for achieving competitive model performance. Considering the computational complexity during the training process, we not only give a theoretically approximate training method, but also propose an acceleration scheme to speed up the training process. We validate our method by spanning several datasets and models and demonstrate that our design can preserve model fidelity and reach prevailing unlearning efficacy with high efficiency. The proposed unlearning paradigm builds a foundation for future machine unlearning system and will become an essential component of the latest privacy-related legislation.
Submitted: Feb 27, 2022