Paper ID: 2203.01451
Label Leakage and Protection from Forward Embedding in Vertical Federated Learning
Jiankai Sun, Xin Yang, Yuanshun Yao, Chong Wang
Vertical federated learning (vFL) has gained much attention and been deployed to solve machine learning problems with data privacy concerns in recent years. However, some recent work demonstrated that vFL is vulnerable to privacy leakage even though only the forward intermediate embedding (rather than raw features) and backpropagated gradients (rather than raw labels) are communicated between the involved participants. As the raw labels often contain highly sensitive information, some recent work has been proposed to prevent the label leakage from the backpropagated gradients effectively in vFL. However, these work only identified and defended the threat of label leakage from the backpropagated gradients. None of these work has paid attention to the problem of label leakage from the intermediate embedding. In this paper, we propose a practical label inference method which can steal private labels effectively from the shared intermediate embedding even though some existing protection methods such as label differential privacy and gradients perturbation are applied. The effectiveness of the label attack is inseparable from the correlation between the intermediate embedding and corresponding private labels. To mitigate the issue of label leakage from the forward embedding, we add an additional optimization goal at the label party to limit the label stealing ability of the adversary by minimizing the distance correlation between the intermediate embedding and corresponding private labels. We conducted massive experiments to demonstrate the effectiveness of our proposed protection methods.
Submitted: Mar 2, 2022