Paper ID: 2203.01482

MetaDT: Meta Decision Tree with Class Hierarchy for Interpretable Few-Shot Learning

Baoquan Zhang, Hao Jiang, Xutao Li, Shanshan Feng, Yunming Ye, Rui Ye

Few-Shot Learning (FSL) is a challenging task, which aims to recognize novel classes with few examples. Recently, lots of methods have been proposed from the perspective of meta-learning and representation learning. However, few works focus on the interpretability of FSL decision process. In this paper, we take a step towards the interpretable FSL by proposing a novel meta-learning based decision tree framework, namely, MetaDT. In particular, the FSL interpretability is achieved from two aspects, i.e., a concept aspect and a visual aspect. On the concept aspect, we first introduce a tree-like concept hierarchy as FSL prior. Then, resorting to the prior, we split each few-shot task to a set of subtasks with different concept levels and then perform class prediction via a model of decision tree. The advantage of such design is that a sequence of high-level concept decisions that lead up to a final class prediction can be obtained, which clarifies the FSL decision process. On the visual aspect, a set of subtask-specific classifiers with visual attention mechanism is designed to perform decision at each node of the decision tree. As a result, a subtask-specific heatmap visualization can be obtained to achieve the decision interpretability of each tree node. At last, to alleviate the data scarcity issue of FSL, we regard the prior of concept hierarchy as an undirected graph, and then design a graph convolution-based decision tree inference network as our meta-learner to infer parameters of the decision tree. Extensive experiments on performance comparison and interpretability analysis show superiority of our MetaDT.

Submitted: Mar 3, 2022