Paper ID: 2203.01909

An Adaptive Human Driver Model for Realistic Race Car Simulations

Stefan Löckel, Siwei Ju, Maximilian Schaller, Peter van Vliet, Jan Peters

Engineering a high-performance race car requires a direct consideration of the human driver using real-world tests or Human-Driver-in-the-Loop simulations. Apart from that, offline simulations with human-like race driver models could make this vehicle development process more effective and efficient but are hard to obtain due to various challenges. With this work, we intend to provide a better understanding of race driver behavior and introduce an adaptive human race driver model based on imitation learning. Using existing findings and an interview with a professional race engineer, we identify fundamental adaptation mechanisms and how drivers learn to optimize lap time on a new track. Subsequently, we use these insights to develop generalization and adaptation techniques for a recently presented probabilistic driver modeling approach and evaluate it using data from professional race drivers and a state-of-the-art race car simulator. We show that our framework can create realistic driving line distributions on unseen race tracks with almost human-like performance. Moreover, our driver model optimizes its driving lap by lap, correcting driving errors from previous laps while achieving faster lap times. This work contributes to a better understanding and modeling of the human driver, aiming to expedite simulation methods in the modern vehicle development process and potentially supporting automated driving and racing technologies.

Submitted: Mar 3, 2022