Paper ID: 2203.02140
Whiplash Gradient Descent Dynamics
Subhransu S. Bhattacharjee, Ian R. Petersen
In this paper, we propose the Whiplash Inertial Gradient dynamics, a closed-loop optimization method that utilises gradient information, to find the minima of a cost function in finite-dimensional settings. We introduce the symplectic asymptotic convergence analysis for the Whiplash system for convex functions. We also introduce relaxation sequences to explain the non-classical nature of the algorithm and an exploring heuristic variant of the Whiplash algorithm to escape saddle points, deterministically. We study the algorithm's performance for various costs and provide a practical methodology for analyzing convergence rates using integral constraint bounds and a novel Lyapunov rate method. Our results demonstrate polynomial and exponential rates of convergence for quadratic cost functions.
Submitted: Mar 4, 2022