Paper ID: 2203.04299
Plug-and-play Shape Refinement Framework for Multi-site and Lifespan Brain Skull Stripping
Yunxiang Li, Ruilong Dan, Shuai Wang, Yifan Cao, Xiangde Luo, Chenghao Tan, Gangyong Jia, Huiyu Zhou, You Zhang, Yaqi Wang, Li Wang
Skull stripping is a crucial prerequisite step in the analysis of brain magnetic resonance images (MRI). Although many excellent works or tools have been proposed, they suffer from low generalization capability. For instance, the model trained on a dataset with specific imaging parameters cannot be well applied to other datasets with different imaging parameters. Especially, for the lifespan datasets, the model trained on an adult dataset is not applicable to an infant dataset due to the large domain difference. To address this issue, numerous methods have been proposed, where domain adaptation based on feature alignment is the most common. Unfortunately, this method has some inherent shortcomings, which need to be retrained for each new domain and requires concurrent access to the input images of both domains. In this paper, we design a plug-and-play shape refinement (PSR) framework for multi-site and lifespan skull stripping. To deal with the domain shift between multi-site lifespan datasets, we take advantage of the brain shape prior, which is invariant to imaging parameters and ages. Experiments demonstrate that our framework can outperform the state-of-the-art methods on multi-site lifespan datasets.
Submitted: Mar 8, 2022