Paper ID: 2203.05194
Learning Torque Control for Quadrupedal Locomotion
Shuxiao Chen, Bike Zhang, Mark W. Mueller, Akshara Rai, Koushil Sreenath
Reinforcement learning (RL) has become a promising approach to developing controllers for quadrupedal robots. Conventionally, an RL design for locomotion follows a position-based paradigm, wherein an RL policy outputs target joint positions at a low frequency that are then tracked by a high-frequency proportional-derivative (PD) controller to produce joint torques. In contrast, for the model-based control of quadrupedal locomotion, there has been a paradigm shift from position-based control to torque-based control. In light of the recent advances in model-based control, we explore an alternative to the position-based RL paradigm, by introducing a torque-based RL framework, where an RL policy directly predicts joint torques at a high frequency, thus circumventing the use of a PD controller. The proposed learning torque control framework is validated with extensive experiments, in which a quadruped is capable of traversing various terrain and resisting external disturbances while following user-specified commands. Furthermore, compared to learning position control, learning torque control demonstrates the potential to achieve a higher reward and is more robust to significant external disturbances. To our knowledge, this is the first sim-to-real attempt for end-to-end learning torque control of quadrupedal locomotion.
Submitted: Mar 10, 2022