Paper ID: 2203.05395
Annotation Efficient Person Re-Identification with Diverse Cluster-Based Pair Selection
Lantian Xue, Yixiong Zou, Peixi Peng, Yonghong Tian, Tiejun Huang
Person Re-identification (Re-ID) has attracted great attention due to its promising real-world applications. However, in practice, it is always costly to annotate the training data to train a Re-ID model, and it still remains challenging to reduce the annotation cost while maintaining the performance for the Re-ID task. To solve this problem, we propose the Annotation Efficient Person Re-Identification method to select image pairs from an alternative pair set according to the fallibility and diversity of pairs, and train the Re-ID model based on the annotation. Specifically, we design an annotation and training framework to firstly reduce the size of the alternative pair set by clustering all images considering the locality of features, secondly select images pairs from intra-/inter-cluster samples for human to annotate, thirdly re-assign clusters according to the annotation, and finally train the model with the re-assigned clusters. During the pair selection, we seek for valuable pairs according to pairs' fallibility and diversity, which includes an intra-cluster criterion to construct image pairs with the most chaotic samples and the representative samples within clusters, an inter-cluster criterion to construct image pairs between clusters based on the second-order Wasserstein distance, and a diversity criterion for clusterbased pair selection. Combining all criteria above, a greedy strategy is developed to solve the pair selection problem. Finally, the above clustering-selecting-annotating-reassigning-training procedure will be repeated until the annotation budget is reached. Extensive experiments on three widely adopted Re-ID datasets show that we can greatly reduce the annotation cost while achieving better performance compared with state-of-the-art works.
Submitted: Mar 10, 2022