Paper ID: 2203.05973

Imitation and Adaptation Based on Consistency: A Quadruped Robot Imitates Animals from Videos Using Deep Reinforcement Learning

Qingfeng Yao, Jilong Wang, Shuyu Yang, Cong Wang, Hongyin Zhang, Qifeng Zhang, Donglin Wang

The essence of quadrupeds' movements is the movement of the center of gravity, which has a pattern in the action of quadrupeds. However, the gait motion planning of the quadruped robot is time-consuming. Animals in nature can provide a large amount of gait information for robots to learn and imitate. Common methods learn animal posture with a motion capture system or numerous motion data points. In this paper, we propose a video imitation adaptation network (VIAN) that can imitate the action of animals and adapt it to the robot from a few seconds of video. The deep learning model extracts key points during animal motion from videos. The VIAN eliminates noise and extracts key information of motion with a motion adaptor, and then applies the extracted movements function as the motion pattern into deep reinforcement learning (DRL). To ensure similarity between the learning result and the animal motion in the video, we introduce rewards that are based on the consistency of the motion. DRL explores and learns to maintain balance from movement patterns from videos, imitates the action of animals, and eventually, allows the model to learn the gait or skills from short motion videos of different animals and to transfer the motion pattern to the real robot.

Submitted: Mar 2, 2022