Paper ID: 2203.06667

Towards Visual-Prompt Temporal Answering Grounding in Medical Instructional Video

Bin Li, Yixuan Weng, Bin Sun, Shutao Li

The temporal answering grounding in the video (TAGV) is a new task naturally derived from temporal sentence grounding in the video (TSGV). Given an untrimmed video and a text question, this task aims at locating the matching span from the video that can semantically answer the question. Existing methods tend to formulate the TAGV task with a visual span-based question answering (QA) approach by matching the visual frame span queried by the text question. However, due to the weak correlations and huge gaps of the semantic features between the textual question and visual answer, existing methods adopting visual span predictor perform poorly in the TAGV task. To bridge these gaps, we propose a visual-prompt text span localizing (VPTSL) method, which introduces the timestamped subtitles as a passage to perform the text span localization for the input text question, and prompts the visual highlight features into the pre-trained language model (PLM) for enhancing the joint semantic representations. Specifically, the context query attention is utilized to perform cross-modal interaction between the extracted textual and visual features. Then, the highlight features are obtained through the video-text highlighting for the visual prompt. To alleviate semantic differences between textual and visual features, we design the text span predictor by encoding the question, the subtitles, and the prompted visual highlight features with the PLM. As a result, the TAGV task is formulated to predict the span of subtitles matching the visual answer. Extensive experiments on the medical instructional dataset, namely MedVidQA, show that the proposed VPTSL outperforms the state-of-the-art (SOTA) method by 28.36% in terms of mIOU with a large margin, which demonstrates the effectiveness of the proposed visual prompt and the text span predictor.

Submitted: Mar 13, 2022