Paper ID: 2203.07706
ActFormer: A GAN-based Transformer towards General Action-Conditioned 3D Human Motion Generation
Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing Ding, Weihao Gan, Yichao Yan, Xin Jin, Xiaokang Yang, Wenjun Zeng, Wei Wu
We present a GAN-based Transformer for general action-conditioned 3D human motion generation, including not only single-person actions but also multi-person interactive actions. Our approach consists of a powerful Action-conditioned motion TransFormer (ActFormer) under a GAN training scheme, equipped with a Gaussian Process latent prior. Such a design combines the strong spatio-temporal representation capacity of Transformer, superiority in generative modeling of GAN, and inherent temporal correlations from the latent prior. Furthermore, ActFormer can be naturally extended to multi-person motions by alternately modeling temporal correlations and human interactions with Transformer encoders. To further facilitate research on multi-person motion generation, we introduce a new synthetic dataset of complex multi-person combat behaviors. Extensive experiments on NTU-13, NTU RGB+D 120, BABEL and the proposed combat dataset show that our method can adapt to various human motion representations and achieve superior performance over the state-of-the-art methods on both single-person and multi-person motion generation tasks, demonstrating a promising step towards a general human motion generator.
Submitted: Mar 15, 2022