Paper ID: 2203.08056

Machine Learning and Cosmology

Cora Dvorkin, Siddharth Mishra-Sharma, Brian Nord, V. Ashley Villar, Camille Avestruz, Keith Bechtol, Aleksandra Ćiprijanović, Andrew J. Connolly, Lehman H. Garrison, Gautham Narayan, Francisco Villaescusa-Navarro

Methods based on machine learning have recently made substantial inroads in many corners of cosmology. Through this process, new computational tools, new perspectives on data collection, model development, analysis, and discovery, as well as new communities and educational pathways have emerged. Despite rapid progress, substantial potential at the intersection of cosmology and machine learning remains untapped. In this white paper, we summarize current and ongoing developments relating to the application of machine learning within cosmology and provide a set of recommendations aimed at maximizing the scientific impact of these burgeoning tools over the coming decade through both technical development as well as the fostering of emerging communities.

Submitted: Mar 15, 2022