Paper ID: 2203.08739
What Do Adversarially trained Neural Networks Focus: A Fourier Domain-based Study
Binxiao Huang, Chaofan Tao, Rui Lin, Ngai Wong
Although many fields have witnessed the superior performance brought about by deep learning, the robustness of neural networks remains an open issue. Specifically, a small adversarial perturbation on the input may cause the model to produce a completely different output. Such poor robustness implies many potential hazards, especially in security-critical applications, e.g., autonomous driving and mobile robotics. This work studies what information the adversarially trained model focuses on. Empirically, we notice that the differences between the clean and adversarial data are mainly distributed in the low-frequency region. We then find that an adversarially-trained model is more robust than its naturally-trained counterpart due to the reason that the former pays more attention to learning the dominant information in low-frequency components. In addition, we consider two common ways to improve model robustness, namely, by data augmentation and by using stronger network architectures, and understand these techniques from a frequency-domain perspective. We are hopeful this work can shed light on the design of more robust neural networks.
Submitted: Mar 16, 2022