Paper ID: 2203.08806

New directions for surrogate models and differentiable programming for High Energy Physics detector simulation

Andreas Adelmann, Walter Hopkins, Evangelos Kourlitis, Michael Kagan, Gregor Kasieczka, Claudius Krause, David Shih, Vinicius Mikuni, Benjamin Nachman, Kevin Pedro, Daniel Winklehner

The computational cost for high energy physics detector simulation in future experimental facilities is going to exceed the current available resources. To overcome this challenge, new ideas on surrogate models using machine learning methods are being explored to replace computationally expensive components. Additionally, differentiable programming has been proposed as a complementary approach, providing controllable and scalable simulation routines. In this document, new and ongoing efforts for surrogate models and differential programming applied to detector simulation are discussed in the context of the 2021 Particle Physics Community Planning Exercise (`Snowmass').

Submitted: Mar 15, 2022