Paper ID: 2203.09280

Knowledge Graph Embedding Methods for Entity Alignment: An Experimental Review

Nikolaos Fanourakis, Vasilis Efthymiou, Dimitris Kotzinos, Vassilis Christophides

In recent years, we have witnessed the proliferation of knowledge graphs (KG) in various domains, aiming to support applications like question answering, recommendations, etc. A frequent task when integrating knowledge from different KGs is to find which subgraphs refer to the same real-world entity. Recently, embedding methods have been used for entity alignment tasks, that learn a vector-space representation of entities which preserves their similarity in the original KGs. A wide variety of supervised, unsupervised, and semi-supervised methods have been proposed that exploit both factual (attribute based) and structural information (relation based) of entities in the KGs. Still, a quantitative assessment of their strengths and weaknesses in real-world KGs according to different performance metrics and KG characteristics is missing from the literature. In this work, we conduct the first meta-level analysis of popular embedding methods for entity alignment, based on a statistically sound methodology. Our analysis reveals statistically significant correlations of different embedding methods with various meta-features extracted by KGs and rank them in a statistically significant way according to their effectiveness across all real-world KGs of our testbed. Finally, we study interesting trade-offs in terms of methods' effectiveness and efficiency.

Submitted: Mar 17, 2022