Paper ID: 2203.13122
Moving Window Regression: A Novel Approach to Ordinal Regression
Nyeong-Ho Shin, Seon-Ho Lee, Chang-Su Kim
A novel ordinal regression algorithm, called moving window regression (MWR), is proposed in this paper. First, we propose the notion of relative rank ($\rho$-rank), which is a new order representation scheme for input and reference instances. Second, we develop global and local relative regressors ($\rho$-regressors) to predict $\rho$-ranks within entire and specific rank ranges, respectively. Third, we refine an initial rank estimate iteratively by selecting two reference instances to form a search window and then estimating the $\rho$-rank within the window. Extensive experiments results show that the proposed algorithm achieves the state-of-the-art performances on various benchmark datasets for facial age estimation and historical color image classification. The codes are available at https://github.com/nhshin-mcl/MWR.
Submitted: Mar 24, 2022