Paper ID: 2203.13472

Facial Expression Recognition with Swin Transformer

Jun-Hwa Kim, Namho Kim, Chee Sun Won

The task of recognizing human facial expressions plays a vital role in various human-related systems, including health care and medical fields. With the recent success of deep learning and the accessibility of a large amount of annotated data, facial expression recognition research has been mature enough to be utilized in real-world scenarios with audio-visual datasets. In this paper, we introduce Swin transformer-based facial expression approach for an in-the-wild audio-visual dataset of the Aff-Wild2 Expression dataset. Specifically, we employ a three-stream network (i.e., Visual stream, Temporal stream, and Audio stream) for the audio-visual videos to fuse the multi-modal information into facial expression recognition. Experimental results on the Aff-Wild2 dataset show the effectiveness of our proposed multi-modal approaches.

Submitted: Mar 25, 2022