Paper ID: 2203.14276
Example-based Hypernetworks for Out-of-Distribution Generalization
Tomer Volk, Eyal Ben-David, Ohad Amosy, Gal Chechik, Roi Reichart
As Natural Language Processing (NLP) algorithms continually achieve new milestones, out-of-distribution generalization remains a significant challenge. This paper addresses the issue of multi-source adaptation for unfamiliar domains: We leverage labeled data from multiple source domains to generalize to unknown target domains at training. Our innovative framework employs example-based Hypernetwork adaptation: a T5 encoder-decoder initially generates a unique signature from an input example, embedding it within the source domains' semantic space. This signature is subsequently utilized by a Hypernetwork to generate the task classifier's weights. We evaluated our method across two tasks - sentiment classification and natural language inference - in 29 adaptation scenarios, where it outpaced established algorithms. In an advanced version, the signature also enriches the input example's representation. We also compare our finetuned architecture to few-shot GPT-3, demonstrating its effectiveness in essential use cases. To our knowledge, this marks the first application of Hypernetworks to the adaptation for unknown domains.
Submitted: Mar 27, 2022