Paper ID: 2203.14581
S2-Net: Self-supervision Guided Feature Representation Learning for Cross-Modality Images
Shasha Mei
Combining the respective advantages of cross-modality images can compensate for the lack of information in the single modality, which has attracted increasing attention of researchers into multi-modal image matching tasks. Meanwhile, due to the great appearance differences between cross-modality image pairs, it often fails to make the feature representations of correspondences as close as possible. In this letter, we design a cross-modality feature representation learning network, S2-Net, which is based on the recently successful detect-and-describe pipeline, originally proposed for visible images but adapted to work with cross-modality image pairs. To solve the consequent problem of optimization difficulties, we introduce self-supervised learning with a well-designed loss function to guide the training without discarding the original advantages. This novel strategy simulates image pairs in the same modality, which is also a useful guide for the training of cross-modality images. Notably, it does not require additional data but significantly improves the performance and is even workable for all methods of the detect-and-describe pipeline. Extensive experiments are conducted to evaluate the performance of the strategy we proposed, compared to both handcrafted and deep learning-based methods. Results show that our elegant formulation of combined optimization of supervised and self-supervised learning outperforms state-of-the-arts on RoadScene and RGB-NIR datasets.
Submitted: Mar 28, 2022