Paper ID: 2203.14593

On-the-Fly Feature Based Rapid Speaker Adaptation for Dysarthric and Elderly Speech Recognition

Mengzhe Geng, Xurong Xie, Rongfeng Su, Jianwei Yu, Zengrui Jin, Tianzi Wang, Shujie Hu, Zi Ye, Helen Meng, Xunying Liu

Accurate recognition of dysarthric and elderly speech remain challenging tasks to date. Speaker-level heterogeneity attributed to accent or gender, when aggregated with age and speech impairment, create large diversity among these speakers. Scarcity of speaker-level data limits the practical use of data-intensive model based speaker adaptation methods. To this end, this paper proposes two novel forms of data-efficient, feature-based on-the-fly speaker adaptation methods: variance-regularized spectral basis embedding (SVR) and spectral feature driven f-LHUC transforms. Experiments conducted on UASpeech dysarthric and DementiaBank Pitt elderly speech corpora suggest the proposed on-the-fly speaker adaptation approaches consistently outperform baseline iVector adapted hybrid DNN/TDNN and E2E Conformer systems by statistically significant WER reduction of 2.48%-2.85% absolute (7.92%-8.06% relative), and offline model based LHUC adaptation by 1.82% absolute (5.63% relative) respectively.

Submitted: Mar 28, 2022