Paper ID: 2203.15166
Autonomous Road Vehicle Emergency Obstacle Avoidance Maneuver Framework at Highway Speeds
Evan Lowe, Levent Güvenç
An Autonomous Road Vehicle (ARV) can navigate various types of road networks using inputs such as throttle (acceleration), braking (deceleration), and steering (change of lateral direction). In most ARV driving scenarios that involve normal vehicle traffic and encounters with vulnerable road users (VRUs), ARVs are not required to take evasive action. This paper presents a novel Emergency Obstacle Avoidance Maneuver (EOAM) methodology for ARVs traveling at higher speeds and lower road surface friction, involving time-critical maneuver determination and control. The proposed EOAM Framework offers usage of the ARV's sensing, perception, control, and actuation system abilities as one cohesive system, to accomplish avoidance of an on-road obstacle, based first on performance feasibility and second on passenger comfort, and is designed to be well-integrated within an ARV high-level system. Co-simulation including the ARV EOAM logic in Simulink and a vehicle model in CarSim is conducted with speeds ranging from 55 to 165 km/h and on road surfaces with friction ranging from 1.0 to 0.1. The results are analyzed and given in the context of an entire ARV system, with implications for future work.
Submitted: Mar 29, 2022