Paper ID: 2203.15228
SHOP: A Deep Learning Based Pipeline for near Real-Time Detection of Small Handheld Objects Present in Blurry Video
Abhinav Ganguly, Amar C Gandhi, Sylvia E, Jeffrey D Chang, Ian M Hudson
While prior works have investigated and developed computational models capable of object detection, models still struggle to reliably interpret images with motion blur and small objects. Moreover, none of these models are specifically designed for handheld object detection. In this work, we present SHOP (Small Handheld Object Pipeline), a pipeline that reliably and efficiently interprets blurry images containing handheld objects. The specific models used in each stage of the pipeline are flexible and can be changed based on performance requirements. First, images are deblurred and then run through a pose detection system where areas-of-interest are proposed around the hands of any people present. Next, object detection is performed on the images by a single-stage object detector. Finally, the proposed areas-of-interest are used to filter out low confidence detections. Testing on a handheld subset of Microsoft Common Objects in Context (MS COCO) demonstrates that this 3 stage process results in a 70 percent decrease in false positives while only reducing true positives by 17 percent in its strongest configuration. We also present a subset of MS COCO consisting solely of handheld objects that can be used to continue the development of handheld object detection methods. https://github.com/spider-sense/SHOP
Submitted: Mar 29, 2022