Paper ID: 2203.15936
Supervised Graph Contrastive Learning for Few-shot Node Classification
Zhen Tan, Kaize Ding, Ruocheng Guo, Huan Liu
Graphs are present in many real-world applications, such as financial fraud detection, commercial recommendation, and social network analysis. But given the high cost of graph annotation or labeling, we face a severe graph label-scarcity problem, i.e., a graph might have a few labeled nodes. One example of such a problem is the so-called \textit{few-shot node classification}. A predominant approach to this problem resorts to \textit{episodic meta-learning}. In this work, we challenge the status quo by asking a fundamental question whether meta-learning is a must for few-shot node classification tasks. We propose a new and simple framework under the standard few-shot node classification setting as an alternative to meta-learning to learn an effective graph encoder. The framework consists of supervised graph contrastive learning with novel mechanisms for data augmentation, subgraph encoding, and multi-scale contrast on graphs. Extensive experiments on three benchmark datasets (CoraFull, Reddit, Ogbn) show that the new framework significantly outperforms state-of-the-art meta-learning based methods.
Submitted: Mar 29, 2022