Paper ID: 2203.16970

A Comparative Study of Fusion Methods for SASV Challenge 2022

Petr Grinberg, Vladislav Shikhov

Automatic Speaker Verification (ASV) system is a type of bio-metric authentication. It can be attacked by an intruder, who falsifies data in order to get access to protected information. Countermeasures (CM) are special algorithms that detect these spoofing-attacks. While the ASVspoof Challenge series were focused on the development of CM for fixed ASV system, the new Spoofing Aware Speaker Verification (SASV) Challenge organizers believe that best results can be achieved if CM and ASV systems are optimized jointly. One of the approaches for cooperative optimization is a fusion over embeddings or scores obtained from ASV and CM models. The baselines of SASV Challenge 2022 present two types of fusion: score-sum and back-end ensemble with a 3-layer MLP. This paper describes our research of other fusion methods, including boosting over embeddings, which has not been used in anti-spoofing studies before.

Submitted: Mar 31, 2022