Paper ID: 2203.16973
Analyzing the factors affecting usefulness of Self-Supervised Pre-trained Representations for Speech Recognition
Ashish Seth, Lodagala V S V Durga Prasad, Sreyan Ghosh, S. Umesh
Self-supervised learning (SSL) to learn high-level speech representations has been a popular approach to building Automatic Speech Recognition (ASR) systems in low-resource settings. However, the common assumption made in literature is that a considerable amount of unlabeled data is available for the same domain or language that can be leveraged for SSL pre-training, which we acknowledge is not feasible in a real-world setting. In this paper, as part of the Interspeech Gram Vaani ASR challenge, we try to study the effect of domain, language, dataset size, and other aspects of our upstream pre-training SSL data on the final performance low-resource downstream ASR task. We also build on the continued pre-training paradigm to study the effect of prior knowledge possessed by models trained using SSL. Extensive experiments and studies reveal that the performance of ASR systems is susceptible to the data used for SSL pre-training. Their performance improves with an increase in similarity and volume of pre-training data. We believe our work will be helpful to the speech community in building better ASR systems in low-resource settings and steer research towards improving generalization in SSL-based pre-training for speech systems.
Submitted: Mar 31, 2022