Paper ID: 2203.17103

$k$NN-NER: Named Entity Recognition with Nearest Neighbor Search

Shuhe Wang, Xiaoya Li, Yuxian Meng, Tianwei Zhang, Rongbin Ouyang, Jiwei Li, Guoyin Wang

Inspired by recent advances in retrieval augmented methods in NLP~\citep{khandelwal2019generalization,khandelwal2020nearest,meng2021gnn}, in this paper, we introduce a $k$ nearest neighbor NER ($k$NN-NER) framework, which augments the distribution of entity labels by assigning $k$ nearest neighbors retrieved from the training set. This strategy makes the model more capable of handling long-tail cases, along with better few-shot learning abilities. $k$NN-NER requires no additional operation during the training phase, and by interpolating $k$ nearest neighbors search into the vanilla NER model, $k$NN-NER consistently outperforms its vanilla counterparts: we achieve a new state-of-the-art F1-score of 72.03 (+1.25) on the Chinese Weibo dataset and improved results on a variety of widely used NER benchmarks. Additionally, we show that $k$NN-NER can achieve comparable results to the vanilla NER model with 40\% less amount of training data. Code available at \url{https://github.com/ShannonAI/KNN-NER}.

Submitted: Mar 31, 2022