Paper ID: 2204.00489

Accelerating Federated Edge Learning via Topology Optimization

Shanfeng Huang, Zezhong Zhang, Shuai Wang, Rui Wang, Kaibin Huang

Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning. However, it consumes excessive learning time due to the existence of straggler devices. In this paper, a novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning and to improve the communication-and-computation efficiency. Specifically, a problem of jointly optimizing the aggregation topology and computing speed is formulated to minimize the weighted summation of energy consumption and latency. To solve the mixed-integer nonlinear problem, we propose a novel solution method of penalty-based successive convex approximation, which converges to a stationary point of the primal problem under mild conditions. To facilitate real-time decision making, an imitation-learning based method is developed, where deep neural networks (DNNs) are trained offline to mimic the penalty-based method, and the trained imitation DNNs are deployed at the edge devices for online inference. Thereby, an efficient imitate-learning based approach is seamlessly integrated into the TOFEL framework. Simulation results demonstrate that the proposed TOFEL scheme accelerates the federated learning process, and achieves a higher energy efficiency. Moreover, we apply the scheme to 3D object detection with multi-vehicle point cloud datasets in the CARLA simulator. The results confirm the superior learning performance of the TOFEL scheme over conventional designs with the same resource and deadline constraints.

Submitted: Apr 1, 2022