Paper ID: 2204.00565

What makes useful auxiliary tasks in reinforcement learning: investigating the effect of the target policy

Banafsheh Rafiee, Jun Jin, Jun Luo, Adam White

Auxiliary tasks have been argued to be useful for representation learning in reinforcement learning. Although many auxiliary tasks have been empirically shown to be effective for accelerating learning on the main task, it is not yet clear what makes useful auxiliary tasks. Some of the most promising results are on the pixel control, reward prediction, and the next state prediction auxiliary tasks; however, the empirical results are mixed, showing substantial improvements in some cases and marginal improvements in others. Careful investigations of how auxiliary tasks help the learning of the main task is necessary. In this paper, we take a step studying the effect of the target policies on the usefulness of the auxiliary tasks formulated as general value functions. General value functions consist of three core elements: 1) policy 2) cumulant 3) continuation function. Our focus on the role of the target policy of the auxiliary tasks is motivated by the fact that the target policy determines the behavior about which the agent wants to make a prediction and the state-action distribution that the agent is trained on, which further affects the main task learning. Our study provides insights about questions such as: Does a greedy policy result in bigger improvement gains compared to other policies? Is it best to set the auxiliary task policy to be the same as the main task policy? Does the choice of the target policy have a substantial effect on the achieved performance gain or simple strategies for setting the policy, such as using a uniformly random policy, work as well? Our empirical results suggest that: 1) Auxiliary tasks with the greedy policy tend to be useful. 2) Most policies, including a uniformly random policy, tend to improve over the baseline. 3) Surprisingly, the main task policy tends to be less useful compared to other policies.

Submitted: Apr 1, 2022