Paper ID: 2204.00825

AdaSmooth: An Adaptive Learning Rate Method based on Effective Ratio

Jun Lu

It is well known that we need to choose the hyper-parameters in Momentum, AdaGrad, AdaDelta, and other alternative stochastic optimizers. While in many cases, the hyper-parameters are tuned tediously based on experience becoming more of an art than science. We present a novel per-dimension learning rate method for gradient descent called AdaSmooth. The method is insensitive to hyper-parameters thus it requires no manual tuning of the hyper-parameters like Momentum, AdaGrad, and AdaDelta methods. We show promising results compared to other methods on different convolutional neural networks, multi-layer perceptron, and alternative machine learning tasks. Empirical results demonstrate that AdaSmooth works well in practice and compares favorably to other stochastic optimization methods in neural networks.

Submitted: Apr 2, 2022