Paper ID: 2204.01672
Residual-guided Personalized Speech Synthesis based on Face Image
Jianrong Wang, Zixuan Wang, Xiaosheng Hu, Xuewei Li, Qiang Fang, Li Liu
Previous works derive personalized speech features by training the model on a large dataset composed of his/her audio sounds. It was reported that face information has a strong link with the speech sound. Thus in this work, we innovatively extract personalized speech features from human faces to synthesize personalized speech using neural vocoder. A Face-based Residual Personalized Speech Synthesis Model (FR-PSS) containing a speech encoder, a speech synthesizer and a face encoder is designed for PSS. In this model, by designing two speech priors, a residual-guided strategy is introduced to guide the face feature to approach the true speech feature in the training. Moreover, considering the error of feature's absolute values and their directional bias, we formulate a novel tri-item loss function for face encoder. Experimental results show that the speech synthesized by our model is comparable to the personalized speech synthesized by training a large amount of audio data in previous works.
Submitted: Apr 1, 2022