Paper ID: 2204.02492
Towards End-to-end Unsupervised Speech Recognition
Alexander H. Liu, Wei-Ning Hsu, Michael Auli, Alexei Baevski
Unsupervised speech recognition has shown great potential to make Automatic Speech Recognition (ASR) systems accessible to every language. However, existing methods still heavily rely on hand-crafted pre-processing. Similar to the trend of making supervised speech recognition end-to-end, we introduce wav2vec-U 2.0 which does away with all audio-side pre-processing and improves accuracy through better architecture. In addition, we introduce an auxiliary self-supervised objective that ties model predictions back to the input. Experiments show that wav2vec-U 2.0 improves unsupervised recognition results across different languages while being conceptually simpler.
Submitted: Apr 5, 2022