Paper ID: 2204.02636

Failure Identification from Unstable Log Data using Deep Learning

Jasmin Bogatinovski, Sasho Nedelkoski, Li Wu, Jorge Cardoso, Odej Kao

The reliability of cloud platforms is of significant relevance because society increasingly relies on complex software systems running on the cloud. To improve it, cloud providers are automating various maintenance tasks, with failure identification frequently being considered. The precondition for automation is the availability of observability tools, with system logs commonly being used. The focus of this paper is log-based failure identification. This problem is challenging because of the instability of the log data and the incompleteness of the explicit logging failure coverage within the code. To address the two challenges, we present CLog as a method for failure identification. The key idea presented herein based is on our observation that by representing the log data as sequences of subprocesses instead of sequences of log events, the effect of the unstable log data is reduced. CLog introduces a novel subprocess extraction method that uses context-aware neural network and clustering methods to extract meaningful subprocesses. The direct modeling of log event contexts allows the identification of failures with respect to the abrupt context changes, addressing the challenge of insufficient logging failure coverage. Our experimental results demonstrate that the learned subprocesses representations reduce the instability in the input, allowing CLog to outperform the baselines on the failure identification subproblems - 1) failure detection by 9-24% on F1 score and 2) failure type identification by 7% on the macro averaged F1 score. Further analysis shows the existent negative correlation between the instability in the input event sequences and the detection performance in a model-agnostic manner.

Submitted: Apr 6, 2022