Paper ID: 2204.02674
Faster-TAD: Towards Temporal Action Detection with Proposal Generation and Classification in a Unified Network
Shimin Chen, Chen Chen, Wei Li, Xunqiang Tao, Yandong Guo
Temporal action detection (TAD) aims to detect the semantic labels and boundaries of action instances in untrimmed videos. Current mainstream approaches are multi-step solutions, which fall short in efficiency and flexibility. In this paper, we propose a unified network for TAD, termed Faster-TAD, by re-purposing a Faster-RCNN like architecture. To tackle the unique difficulty in TAD, we make important improvements over the original framework. We propose a new Context-Adaptive Proposal Module and an innovative Fake-Proposal Generation Block. What's more, we use atomic action features to improve the performance. Faster-TAD simplifies the pipeline of TAD and gets remarkable performance on lots of benchmarks, i.e., ActivityNet-1.3 (40.01% mAP), HACS Segments (38.39% mAP), SoccerNet-Action Spotting (54.09% mAP). It outperforms existing single-network detector by a large margin.
Submitted: Apr 6, 2022