Paper ID: 2204.05308

On the Generalization of BasicVSR++ to Video Deblurring and Denoising

Kelvin C. K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy

The exploitation of long-term information has been a long-standing problem in video restoration. The recent BasicVSR and BasicVSR++ have shown remarkable performance in video super-resolution through long-term propagation and effective alignment. Their success has led to a question of whether they can be transferred to different video restoration tasks. In this work, we extend BasicVSR++ to a generic framework for video restoration tasks. In tasks where inputs and outputs possess identical spatial size, the input resolution is reduced by strided convolutions to maintain efficiency. With only minimal changes from BasicVSR++, the proposed framework achieves compelling performance with great efficiency in various video restoration tasks including video deblurring and denoising. Notably, BasicVSR++ achieves comparable performance to Transformer-based approaches with up to 79% of parameter reduction and 44x speedup. The promising results demonstrate the importance of propagation and alignment in video restoration tasks beyond just video super-resolution. Code and models are available at https://github.com/ckkelvinchan/BasicVSR_PlusPlus.

Submitted: Apr 11, 2022