Paper ID: 2204.05682
A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive with Supervised Learning in Standard Spiking Neural Networks
Thomas F. Tiotto, Jelmer P. Borst, Niels A. Taatgen
Memristive devices are a class of circuit elements that shows great promise as future building block for brain-inspired computing. One influential view in theoretical neuroscience sees the brain as a function-computing device: given input signals, the brain applies a function in order to generate new internal states and motor outputs. Therefore, being able to approximate functions is a fundamental axiom to build upon for future brain research and to derive more efficient computational machines. In this work we apply a novel supervised learning algorithm - based on controlling niobium-doped strontium titanate memristive synapses - to learning non-trivial multidimensional functions. By implementing our method into the spiking neural network simulator Nengo, we show that we are able to at least match the performance obtained when using ideal, linear synapses and - in doing so - that this kind of memristive device can be harnessed as computational substrate to move towards more efficient, brain-inspired computing.
Submitted: Apr 12, 2022