Paper ID: 2204.06251

Experimental Standards for Deep Learning in Natural Language Processing Research

Dennis Ulmer, Elisa Bassignana, Max Müller-Eberstein, Daniel Varab, Mike Zhang, Rob van der Goot, Christian Hardmeier, Barbara Plank

The field of Deep Learning (DL) has undergone explosive growth during the last decade, with a substantial impact on Natural Language Processing (NLP) as well. Yet, compared to more established disciplines, a lack of common experimental standards remains an open challenge to the field at large. Starting from fundamental scientific principles, we distill ongoing discussions on experimental standards in NLP into a single, widely-applicable methodology. Following these best practices is crucial to strengthen experimental evidence, improve reproducibility and support scientific progress. These standards are further collected in a public repository to help them transparently adapt to future needs.

Submitted: Apr 13, 2022