Paper ID: 2204.07037

LDPC codes: tracking non-stationary channel noise using sequential variational Bayesian estimates

J du Toit, J du Preez, R Wolhuter

We present a sequential Bayesian learning method for tracking non-stationary signal-to-noise ratios in LDPC codes using probabilistic graphical models. We represent the LDPC code as a cluster graph using a general purpose cluster graph construction algorithm called the layered trees running intersection property (LTRIP) algorithm. The channel noise estimator is a global Gamma cluster, which we extend to allow for Bayesian tracking of non-stationary noise variation. We evaluate our proposed model on real-world 5G drive test data. Our results show that our model is capable of tracking non-stationary channel noise, which outperforms an LDPC code with a fixed knowledge of the actual average channel noise.

Submitted: Apr 13, 2022